01 背包
有n 种不同的物品,每个物品有两个属性,size 体积,value 价值,每种物品只有一个,现在给一个容量为 w 的背包,问最多可带走多少价值的物品。
1 int f[w+1]; //f[x] 表示背包容量为x 时的最大价值 2 for (int i=0; i=size[i]; j--) 4 f[j] = max(f[j], f[j-size[i]]+value[i]); //逆序
完全背包
如果物品不计件数,就是每个物品有无数件的话,稍微改下即可
1 for (int i=0; i
多重背包既是每个物体有一定的重量w和价值v,并且有一定的数量cnt,设m为背包可包含重量;
1 #include2 #include
定理:一个正整数n可以被分解成1,2,4,…,2^(k-1),n-2^k+1(k是满足n-2^k+1>0的最大整数)的形式,且1~n之内的所有整数均可以唯一表示成1,2,4,…,2^(k-1),n-2^k+1中某几个数的和的形式。
证明如下:
(1) 数列1,2,4,…,2^(k-1),n-2^k+1中所有元素的和为n,所以若干元素的和的范围为:[1, n];
(2)如果正整数t<= 2^k – 1,则t一定能用1,2,4,…,2^(k-1)中某几个数的和表示,这个很容易证明:我们把t的二进制表示写出来,很明显,t可以表示成n=a0*2^0+a1*2^1+…+ak*2^(k-1),其中ak=0或者1,表示t的第ak位二进制数为0或者1.
(3)如果t>=2^k,设s=n-2^k+1,则t-s<=2^k-1,因而t-s可以表示成1,2,4,…,2^(k-1)中某几个数的和的形式,进而t可以表示成1,2,4,…,2^(k-1),s中某几个数的和(加数中一定含有s)的形式。
(证毕!)